----------------------------------------------------------------------------------------------------------------------
NEW OBJECTIVE QUESTION
*img855.imageshack.us/img855/8792/installh.png
Plz explain your answer
(Also you can ask your mathematics related questions or queries
we will try to solve them)
----------------------------------------------------------------------------------------------------------------------
It is not necessary
for example
if a=1,b=1,c=1
then a[sup]3[/sup] + b[sup]3[/sup] + c[sup]3[/sup] = 3abc
but a + b + c = 3
Can you prove that (a[SUP]2[/SUP] + b[SUP]2[/SUP] + c[SUP]2[/SUP] − ab − bc − ca) is non zero? where a,b,c = f(x),x,-1?
i.e. f(x)[SUP]2[/SUP] + x[SUP]2[/SUP] + 1 + f(x) + x -f(x)x ≠ 0
----------------------------------------------------------------------------------------------------------------------
NEW OBJECTIVE QUESTION
*img694.imageshack.us/img694/6659/principala.png
Plz explain your answer
(Also you can ask your mathematics related questions or queries
we will try to solve them)
----------------------------------------------------------------------------------------------------------------------
ThanksSuppose f(x)[sup]2[/sup] + x[sup]2[/sup] + 1 + f(x) + x -f(x)x =0
let f(x)=y
then
y[sup]2[/sup] + x[sup]2[/sup] + 1 + y + x -yx =0
y[sup]2[/sup] + y -yx+ x[sup]2[/sup] + 1+ x =0
y[sup]2[/sup] + y(1 -x)+ x[sup]2[/sup] + 1+ x =0
Here a=1 , b=(1 -x) and c=x[sup]2[/sup] + 1+ x
D=b[sup]2[/sup] -4ac
=(1 -x)[sup]2[/sup] -4(x[sup]2[/sup] + 1+ x )
= -(3 x[sup]2[/sup]+6x+3)
= -3(x[sup]2[/sup]+2x+1)
= -3 (x+1)[sup]2[/sup]
= - ve [as (x+1)[sup]2[/sup] is always positive]
So there is no real value of y [or f(x)] which satisfy this equation
Hence f(x)[sup]2[/sup] + x[sup]2[/sup] + 1 + f(x) + x -f(x)x =0 is not possible for any real fuction f(x)
My answer is coming out to be [2*(a^2)*(b^2)]/[sqrt(a^2 + b^2)].
First we find the equation of the radical axis, i.e. S-S'= 0
=>ax -by = 0
Then we find distance of the above line from any one centre, and then use Pyth. Theorem to find the length of the chord.
Alternatively, we can simply find the points of intersection of the common chord with any one circle, then use distance formula to calculate the length.
Please confirm if my answer is correct.
P&C comes under maths.This thread is only for maths questions
For P&C questions ,we have to start new thread