rst
Youngling
Re: mathematic related questions
remainder is 1
-----------------------------------------
3^2002 +7^2002 + 2002
3^2002 =(1+2)^2001 x 3
=[2001C0 + 2001C1 x 2 + 2001C2 x 2^2 ..... +2001 C 2001 x 2^2001 ] x3
=[1 + 2001C1 x 2 + 2001C2 x 2^2 ..... +2^2001 ] x3
when divided by 29
remainder = (1 +0 +0 +.............+2) x3
=3 x 3
=9
7^2002 =(1+6)^2001 x 7
=[2001C0 + 2001C1 x 6+ 2001C2 x 6^2 ..... +2001 C 2001 x 6^2001 ] x7
=[1 + 2001C1 x 6 + 2001C2 x 6^2 ..... +6^2001 ] x7
when divided by 29
remainder = (1 +0 +0 +.............+6) x7
=7 x 7
=49
or remainder =20
2002 give remainder 1 when divided by 29
total remainder = 9+20+1
=30
which give remainder 1
remainder is 1
-----------------------------------------
3^2002 +7^2002 + 2002
3^2002 =(1+2)^2001 x 3
=[2001C0 + 2001C1 x 2 + 2001C2 x 2^2 ..... +2001 C 2001 x 2^2001 ] x3
=[1 + 2001C1 x 2 + 2001C2 x 2^2 ..... +2^2001 ] x3
when divided by 29
remainder = (1 +0 +0 +.............+2) x3
=3 x 3
=9
7^2002 =(1+6)^2001 x 7
=[2001C0 + 2001C1 x 6+ 2001C2 x 6^2 ..... +2001 C 2001 x 6^2001 ] x7
=[1 + 2001C1 x 6 + 2001C2 x 6^2 ..... +6^2001 ] x7
when divided by 29
remainder = (1 +0 +0 +.............+6) x7
=7 x 7
=49
or remainder =20
2002 give remainder 1 when divided by 29
total remainder = 9+20+1
=30
which give remainder 1
Last edited: