Cell is a microprocessor architecture jointly developed by Sony Computer Entertainment, Toshiba, and IBM, an alliance known as "STI". The architectural design and first implementation were carried out at the STI Design Center in Austin, Texas over a four-year period beginning March 2001 on a budget reported by IBM as approaching US$400 million. Cell is shorthand for Cell Broadband Engine Architecture, commonly abbreviated CBEA in full or Cell BE in part. Cell combines a general-purpose Power Architecture core of modest performance with streamlined coprocessing elements which greatly accelerate multimedia and vector processing applications, as well as many other forms of dedicated computation.
The first major commercial application of Cell was in Sony's PlayStation 3game console. Mercury Computer Systems has a dual Cell server, a dual Cell blade configuration, a rugged computer, and a PCI Express accelerator board available in different stages of production. Toshiba has announced plans to incorporate Cell in high definition television sets. Exotic features such as the XDR memory subsystem and coherent Element Interconnect Bus (EIB) interconnect appear to position Cell for future applications in the supercomputing space to exploit the Cell processor's prowess in floating point kernels. IBM has announced plans to incorporate Cell processors as add-on cards into IBM System z9 mainframes, to enable them to be used as servers for MMORPGs READ MORE
A multi-core CPU (or chip-level multiprocessor, CMP) combines two or more independent cores into a single package composed of a single integrated circuit (IC), called a die, or more dies packaged together. A dual-core processor contains two cores and a quad-core in a single physical package. A processor with all cores on a single die is called a monolithic processor. Cores in a multicore device may share a single coherent cache at the highest on-device cache level (e.g. L2 for the processor contains four cores. A multi-core microprocessor implements multiprocessingIntel Core 2) or may have separate caches (e.g. current AMD dual-core processors). The processors also share the same interconnect to the rest of the system. Each "core" independently implements optimizations such as superscalar execution, pipelining, and multithreading. A system with N cores is effective when it is presented with N or more threads concurrently. The most commercially significant (or at least the most 'obvious') multi-core processors are those used in computers (primarily from Intel & AMD) and game consoles (e.g., the Cell processor in the PS3). In this context, "multi" typically means a relatively small number of cores. However, the technology is widely used in other technology areas, especially those of embedded processors, such as network processors and digital signal processors, and in GPUs. READ MORE